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Optimization of a process with difference arguments is considered. Necessary optimality 

conditions are obtained in the form of maximum principle. The problem is reduced to 

a boundary-value problem for a system of ordinary differential equations with no differ- 

ence arguments. This is performed by a special transformation. 

The damping of vibrations of a string is considered as an example. 

1, Some important problems in mathematical physics such as the damping of one- 

dimensional vibrational processes (see Example) can be reduced to the following optimal 
problem. 

For the process s(t) = @t(t),..., z,,(t)) with the values z e X c E, for each 
t E IO, k ik] -the process being described on the portions [st,, (s + l)tmJ (s = O,... 
. . . . k - 1) by the equations 

dx 
dt elk+7 I - qP(r, Zf, z-) (reEO,tk]; s=O,...,k-1) (1.1) 

with the boundary conditions 

fl (zi, . . . ) $1, 5;, . . . ) 2$-l) = 0 (i=l,..., q; q<2W (1.2) 
it is required to find a control u(t) = (u,(t),. .., u,(t)) with the values u E U 2 h’, 
for each t E 10, kt,J which minimizes the functional 

J = fO(zoor . . . , z;-‘, zko, . . . , s;-‘) (1.3) 

where z(t) is a continuous time vector-function and u(t) is a piece-wise continuous 
timevector-function on [stkr (s + l)tk]; cp’ = ((pI’ ,..., cp,‘), fo,..., f, are conti- 
nuous and twice continuously differentiabie ; t, is a specified value, 
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z+ = (x(r),..., s((k - 1) tk + T), U(T),..., u((k - IPk + a 
z- = (@k - $,..., X(kk - r), U(tk - r), . . . . U(ktk - r)) 

2~=(Z~OS)=5(stk+‘F)\Z,=z((s+l) ~k--)Irrlk 
xks = (Xik*) = 2 (stk + r) IrBtk = x((S f I> tk - 7) Ird 

The solution of the problem as formulated above is called an optimal solution. 
In view of the specific character of the difference argument and of the definition 

domain of the solution on the time axis, it is possible to formulate such necessary con- 
ditions of optimality that enable one to apply the maximum principle of Pontriagin( 11; 

the problem is thus reduced to a standard boundary-value problem for an enlarged sys- 

tem of ordinary differential equations with no difference arguments. 
We introduce new phase coordinates x8 = 2‘ (r), z’- = z’- (r) and new control 

functions u” = u’ (r), u’- = u‘-(r) related to the original ones 

z’(t) = z(st, + T), e(f)=5((s+l)th.-t), u’(t)=U(dk+r)(1.4) 
u’-(r) = u((Sf l)tk-- 7) 

(s=O,. . ., k-l) 
Obviously 

ti((T) = ti-(2, - r), u’(r) = t&O- (tk - ‘5) 

5’ (0) = r’- (tk) = z,,*, &(tk) = z’- (0) = xk‘: (1.5) 

dx dxS drs dx’- 

dt 8fk++ 
=x7 dr ,k_y =- - dz 

Hence and from (1.1) it follows that the vector-functions 

2+ = (ZlO,. . .,5, k-‘), 5- = (qO-, . . . ( &+‘)-), UT = (UC, . . . ( p) 
(k-l)- 

U-=(U/-,...,Ur ) 

satisfy the equations 

dq 
- = (p<(z, 2+, 5, u+, u-), 

dr 
fg = - ‘Pi”- (7, x+, z-, u+, IL-) (1.6) 

(7E 10, tk]; i=l,. . ., n; s=O,. . .,k-1) 

Also 
Jag = zs (0) xkS = x8(&), x0’- = &(o), $;- = XL- (tk) 

are related by the expression (1.2) and the conditions 

xa* - xp = 0, xk 
s- - x08 z?z 0 (s=O,. . .,k-1) (1.7) 

The vector-function ‘p’- = ((PI‘-,..., Cp,“-) is obtained from cp’ = ((P~*,...,(P,,‘) 
by replacing its argument ‘t by r,; - -t and by inverting the superscripts plus and minus 
of the other arguments. We set k-l 

H(r, x+, x-, u+, u-9 h’, A-)= 2 [(h”, cp’) + (h”-, cp"-)I (1.X) 
LEO 

where 
k+ = (hi”, . . .) I$‘), I.- = (AID-, . . .( gtk-“-), A+.+(z) = 2.; (tr - z) 

are defined from the equauons 

dlii’ aH dk,+ aH 
-= 

dT 
_.-( -=- 

dr ax,* &cia 

together with the boundary conditions 
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(1.10) 

@SO,. . ., k-i; i=l,...,n) 

Here v. = 1, Vs,..., vq are the constant Lagrange multipliers, and 

%, = a,:(O), ?& - A;(&), z, = #-(0), hi, = hi”(&) 

Necessary conditions for optimality of the control u(t) and hence a method for solving 

the problem are given in the following theorem. 

Theorem 1. In order that the controls u(t), t 6Z IO, kt,] be optimal it is neces- 

sary that for each 7 E [O, tk] the function H(z, z*, z-, u+, U-, hl, A-) of the varia- 

bles u’ E u, U’-E U attain its maximum on the values u(t). 
It follows from the theorem that in the open kernel of the region U the optimal con- 

trol satisfies the equations 
i3H: o i3H 
aujs=' -=0 

hL;- 

(j=l,..., r; s=O ,..., k-l) (1.11) 

It is noted that the functions i’:‘, Z-, U+, u- should be regarded as ordinary phase 

coordinates and control functions of the argument r : T E LO, t,l. Thus by Theorem 1 
the problem is reduced to the integration of Eqs. (1.6) and (1.9) together with the neces- 

sary optimality conditions for u+, u- as given, for example, by (1.11) with the bound- 
ary conditions (1.2), (1.7) and (1. lo), i. e. to the solution of a boundary-value problem 

without a difference argument. 
The proof of the theorem is given in the Appendix. 

2. We shall now consider the problem of damping the string vibrations which are 

governed by the wave equation 

21: - a% .= p (4 E) (6 < 5 < 4 6 < 2 < &J (2.1) 

satisfying the initial and boundary conditions 

2 It-0 = cp (0, 21 It=0 - 9 (8, 2 l&f = 0, 2 JEW0 = 51 (t) (2.2) 

Here z = z(t, c$) is the deviation ofthestring from its equilibrium position, a is the 
propagation velocity of excitation, J’(t, E), q(E), q,(E) are given functions which have 

the required function-theoretical properties, sl(t) is the motion of the left end of the 
string to be selected in such a manner that damping results, a, 1, t, = 1 ! a are known 

quantities. 

One can adopt as a measure of damping the string its energy at the instant t = 2t, 

I=~S(T.,‘I.~+pre’I,I,)dE (T .= asp) (2.3) 
0 

where T and p are tension and mass density of the string respectively I‘L]. 

The problem now consists in determining xi(t), t E [0,2t,], s,(O) = q(O) which 
minimize the functional (i?. 3). 

The solution of Eq. (2.1) satisfying the conditions (2,2) can be written in the follow- 
ing form r2]: 

z(t, E) = zo(k E) + %@9 E) 

Here q(t, E) is the solution of Eq. (2.1) under the conditions (‘2.2) in which the last 

relation has been replaced by z]e-o = 0; the fttnctions 3(2t&),~ (2&J), zIt(2tk,&) 
are given by the formulas 
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%htk = xi (2tk - W - 21 (ChG, %Ehk= -h’(U(2t,,-_a)+U(ya)] 

zlt talk = u(2t, - &/a) - ~@a), u(t) = dq/dt (2.4) 
By inserting the expressions (2.4) into the right side of (2.3) we find after simple 

transformation that the minimization of 1 leads to minimization of the functional 

J = qko (2.5) 
defined by the system of equations with ditterence arguments as in (1. l), 

dx1 I dx1 
dt+ = q’s19 dt tk+? I = u(t1,+ 7) 

dxla (2.6) 
- = I+)la+ [up,- W+&(~)qq--) +4(Qu(T) dr 

with the boundary conditions 

2m” = 0, x1 (7) LO = cp (01, xl (4 lhth = zl (tti + r) Jr4 (? = ~4 (2.7) 

Al (T) = aelzol (2t,, a@ - ze (2tk, of), Al (7) = - a+zot (2t,, a%) - 20~ (2t,, ~27) 

(2.8) 

The system (2.6) and the boundary conditions (2.7) are reduced to the following rela- 

tions analogous to (1.2). (1.6) and (1.7) : 

dxl- 
-=--_ 

o- 

dK 

axze .-= 
dr (u”)’ + (u’_)” + A&- + A&O, fg = - (u”)+(u’)’ - A1 (tk - 

-T)U’- A,@,-T)u” 

xlo" = q(o), Ilk0 - 210' = 0, zm" = 0, 2;; = &, & = & ( i= 1, 2; _y=(,, 1 

Thus in the case under consideration 

H = Xl%” + j&i’ + g [(u”)’ + (ul-)’ + A+‘- + AIUOl + h+- zf- + 

+&I-ul-+&I”[(u”)‘+ (d)*+A~(tk-T)uli- Aa(tk-T)U*I 

The expression for H does not contain the phase coordinates explicitly ; therefore we 

have &O = AI” = const, &I= 5’- = con&, v = &* = con& 

From the transversality conditions (1.10) we obtain 

&” = &” _- Al1 = AI’- = 0, &O R ASo- Z - 1 

and from the equations 

ilH I duo = 0, 8H I 8~’ = 0 
we find that 

U’(T) = U(T) = - ‘/a AS(Z), U’(T) := U(tk + T) = - ‘/t Al(tk - T) 

Consequently, the sought optimal control xl(t) is given by the expressions 

(0 < z < tk) (2.9) 



Optimization of processe.s with difference arguments 969 

rl(tk+z)=cp(0)-+ ShA,(r)dr--~~Al(I,--r)dr 
0 0 

In the particular case of 

(Cont.) 

we have 
Z=~,=IC, a=l, q(E)=AsinE, @(E)=F(t,g)=O 

20 12tk = ,4 sin E, Zot 12tk = 0, 2,: lztk = .4 cos E, A,(z) = A,(z) = - ,4cosz 

Consequently, 

21(~) = 1/2 A sin T, %(tk -k a) = - l/s A sin z 
Together the above formulas yield 

z1 (t) = ‘/%A sin t (0 < l< 2&) 

Then, in view of (2.4) we find 

(2.10) 

and we have now 
21 12tk = - A sin E, Zlf /2tk = 0 

2 12tli = 20 12th. + %I25 = 0, 21 12fk = Zot I*$ + Z1t I*$ = 0 

Thus, the control (2.10) brings the string into an equilibriuti position. 
A p p en d i x. It is obvious that having introduced the vector-functions t+, z-, u+, U- 

the optimization of u (t) reduces to the solving of the following optimal problem: for 

the system (1.6) with phase state LZ +, z- satisfying the boundary conditions (1.2) and 
(1.7) it is required to find the control us, u*- with values in U which minimizes the 
functional (1.3). In view of (1.5) the functions uf and u- are connected by the relations 

u+ (z) = IL- (tb - z), u- (T) = u+ (tk - T) (A.11 

We note that (1.6). (1.7) and (A. 1) imply 

2+ (T) - 2 (tk - ‘t), z- (2) = 5+ (tk - ‘c) (A-2) 

This indicates that the conditions (1.5) on z”, z’- have become identities. 

It is obvious that to solve the above formulated problem one can apply the maximum 

principle of Pontriagin. The construction of almost impulsive variation of the COntrOl 

should be considered independently. This special feature related to the condition (A. 1) 
implies the following: if on an arbitrary small interval [z’, z”] C [0, tb] the controlu+(?) 
is associated with an almost impulsive variation, that is, if u+ (z) - o , o E U, then we 

have simultaneously u- (z) = o , z E [fk - x”, tk - ~‘1. This results in an independent 
nonpositive term appearing in me expression for the linear part of the increment of the 

functional ‘j t ., 

s 
[H* (7, z+, x-, 0, u-, p+, p-) - H* (z, x+, x-, u’, u-, p+, p-)] dz + 

7’ 
tk-4’ 

+ \ [H* (r, P, x-, u+, o, p+, p-) - HZ (c x+c+, I-, u+, u-, p+, p-)1 dz < 0 (A.3) 
$T’ 

k-l 

I$* = 2 tw. m - w-. V-)1 

where z+, x-, IL+, IL- define the optimal state, and w corresponds to the control,almost 
impulsive variation ; p.+ = (plo,...,pF), p- = (plo-,...p,(k-l)-) are adjoint functions 
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which are defined from the equations p] 

dp.8 
1= aH+ dP*8- aH* z E [0, lk]; i = 1, . . . , n 

dz 
-- 

az.8 3 dz=- ax;- > 
(A.41 

, s=O,f,...,k--1 

with the boundary conditions 

(i = 1; . . . . n; 8 - 0 ,..., k - 1) 
(A.5) 

In the relations (A. 5) the subscripts zero and k of p correspond to its values at z = 0 

and ‘F = tk; vf’, vik are constant Lagrange multipliers, 

It can be seen that in addition to the usual first term in the maximum principle theo- 

rem the left side of (A. 3) contains also another term. We change the variables under 

the integral sign in the second integral of (A. 3) by z = tk - t subsequently we return 
to the previous notation for the independent variable and we obtain 

7” 

s 
[H* (7, x+,x-, 0, u-, IL+, P-) + H* (T z+, 2-s u+, 0, P+‘, P-) I tk_T - 

7’ 
- H*(z, x+, x-, u+, u-, p+, B-) - H*(z, x+, x-i u+, u-, p+, ~3 I tk_5 1 dT < 0 

By writing the integrand and using obvious relations 

as well as the relations 
g” Itk-< = (P’-, cp’- , fk_T = v 

A’= l.&’ -pa- ltr* Aa- = pa I tlr_+ - Ir* (s=O,...,k---1) 

whose validity is shown below, we obtain 
5” 

s 
[H (z, x+, x-, co, u-, I.*, As-) - H (z, x+, x-, u+, u-, A+, A-)] dz ( 0 

t’ 

(A.6) 

Then by employing the usual considerations of the maximum principle theory we 

establish the validity of the assertion of Theorem 1 as regards us-. Similarly, by associ- 

ating on i-r’, r”] c (0, tkl an almost impulsive variation with.the control us- we prove 

the assertion of the theorem as regards us-. It remains to show that h6, lee introduced in 

(A. 6) satisfy the equality ~~Fl!ii-~ = hs-,and the Eqs. (1.9) as well as the boundary con- 

ditions (1.10). The relation hsllk_+ = h 8- follows directly from the comparison of the 

right sides in (A. 6). 
The conditions (A. 5) can be written as 

9 

p. 
11; 

8-pLIoS-=-~ af. 
v. 3 
3 axikE * hOs - hk 

j=o 

It follows directly that the left sides in (A. 6) satisfy the relations (1.10) 
Since 

dp8 dps (tk - 7) dpB- dp8- pr - z) 

dz +:=- dz ’ dz = - !p dz 

therefore 

(A.7) 
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The relations (A. 4) imply that 

dpis dpt8- 
-+- 

aH* aH* 
dz & tk-+= -F - T axi - tp 

aH* aH+ 
+ 

dp .+ 
--=-q- 

dz t k-T -azis_ 

By writing out the right sides, cancelling identical terms and using (A. 6) and (A. 7) 

and the obvious relations 

acp j+ I acPj' a'Pjv I a’p j"- 

axis- tk_T = a2.8 7 I az,e- lk4=aZjd 

we find that the left sides of (A. 6) also satisfy the system (1.9). 
The theorem has been proved in its entirety. 
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The theory of the interior.state of stress constructed in [l] in conformity with the scheme 
described in C2] is supplemented by an asymptotic boundary layer theory (a theory of 
edge states of stress) and the question of boundary layer interaction with the interior state 

of stress is solved for a thin elastic isotropic shell. 
A two-dimensional linear theory of thin elastic shells is formulated at the end. It is 

based on the results herein and in [l], and is an extension of the classical theory of shells 

in the sense that it permits a more exact construction of the interior state of stress and,in a 
certain approximation, the investigation of edge elastic phenomena not taken into account 

by classical theory. The.interior state of stress is computed by the method proposed by 

using equations and boundary conditions of classical theory, which are insignificantly 
modified, and the computations of the edge stresses reduces to the construction of a linear 

combination of solutions of certain auxiliary plane and antiplane problems with standard 
conditions independent of the geometric properties of the shell and of the nature of its 

loading. 


